Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.561
Filtrar
1.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462102

RESUMO

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Assuntos
Aminoquinolinas , Compostos de Anilina , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
2.
Antiviral Res ; 225: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555023

RESUMO

The main protease (MPro) of SARS-CoV-2, the causative agent of COVID-19, is a pivotal nonstructural protein critical for viral replication and pathogenesis. Its protease function relies on three active site pockets for substrate recognition and a catalytic cysteine for enzymatic activity. To develop potential SARS-CoV-2 antivirals, we successfully synthesized a diverse range of azapeptide inhibitors with various covalent warheads to target MPro's catalytic cysteine. Our characterization identified potent MPro inhibitors, including MPI89 that features an aza-2,2-dichloroacetyl warhead with a remarkable EC50 value of 10 nM against SARS-CoV-2 infection in ACE2+ A549 cells and a selective index of 875. MPI89 is also remarkably selective and shows no potency against SARS-CoV-2 papain-like protease and several human proteases. Crystallography analyses demonstrated that these inhibitors covalently engaged the catalytic cysteine and used the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 stands as one of the most potent MPro inhibitors, suggesting the potential for further exploration of azapeptides and the aza-2,2-dichloroacetyl warhead for developing effective therapeutics against COVID-19.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437993

RESUMO

Ischemic stroke is the main cause of death and disability, and microglia play a crucial role in the pathophysiology of hypoxic ischemic brain injury. We found that SENP3 is highly expressed in the early stages of ischemic stroke in both in vivo and in vitro mouse models, and may be related to the deSUMOylation of the key kinase MKK7 in the TLR4/p-JNK signaling pathway. Knocking down SENP3 can inhibit the deSUMOylation of MKK7, thereby inhibiting the activation of the TLR4/p-JNK signaling pathway in an in vitro stroke model. Proteomic analysis showed that SENP3 undergoes phosphorylation at the T429 site after ischemic stroke. Computer simulation predictions show a significant enhancement of the interaction between pT429-SENP3 and MKK7, which has been confirmed through experiments on the interaction of biological macromolecules (SPR). The mitochondrial metabolic abnormalities caused by energy abnormalities in the early stages of stroke provide a good explanation for the phosphorylation of SENP3. Therefore, we used the mitochondrial complex inhibitor TTFA to reverse demonstrate that the phosphorylation of SENP3 comes from the large amount of adenosine triphosphate produced by mitochondrial abnormal metabolism caused by early oxygen glucose deficiency. Finally, proteomic analysis indicates that a significant amount of oxidative phosphorylation does occur in the early stages of stroke. In summary, targeted regulation of SENP3 phosphorylation to affect the deSUMOylation of MKK7 may inhibit secondary inflammation in ischemic stroke.


Assuntos
AVC Isquêmico , Camundongos , Animais , Simulação por Computador , Proteômica , Receptor 4 Toll-Like , Cisteína Endopeptidases/metabolismo , Inflamação/metabolismo
4.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374407

RESUMO

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt
5.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
J Theor Biol ; 582: 111757, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336240

RESUMO

BACKGROUND: Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS: We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS: Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS: This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.


Assuntos
Fator X , Proteínas de Neoplasias , Fosfolipídeos , Fator X/metabolismo , Fosfolipídeos/metabolismo , Fator IXa/metabolismo , Cisteína Endopeptidases/metabolismo , Cinética
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305454

RESUMO

This opinion article addresses a major issue in molecular biology and drug discovery by highlighting the complications that arise from combining polyproteins and their functional products within the same database entry. This problem, exemplified by the discovery of novel inhibitors for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease, has an influence on our ability to retrieve precise data and hinders the development of targeted therapies. It also emphasizes the need for improved database practices and underscores their significance in advancing scientific research. Furthermore, it emphasizes the need of learning from the SARS-CoV-2 pandemic in order to improve global preparedness for future health crises.


Assuntos
COVID-19 , Humanos , Poliproteínas/metabolismo , Cisteína Endopeptidases/metabolismo , SARS-CoV-2/metabolismo , Descoberta de Drogas , Simulação de Acoplamento Molecular
8.
Discov Med ; 36(181): 355-365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409840

RESUMO

BACKGROUND: Arg-gingipain A (rgpA) and Arg-gingipain B (rgpB) are crucial virulence factors associated with Porphyromonas gingivalis (P. gingivalis) and have been recognized as promising targets for antibacterial vaccines. Although vaccines containing rgpA have shown efficacy, the incorporation of rgpB, which lacks the haemagglutinin adhesin (HA) domain, diminishes the vaccine's effectiveness. This study aims to assess the immunogenicity of the functional HA domain of rgpA in mouse periodontitis models. METHODS: A total of 24 mice were randomly divided into four groups, each receiving different immune injections: group A received phosphate-buffered saline (PBS) as an empty control; group B received pVAX1 as a negative control (NC); group C received pVAX1-HA; and group D received pVAX1-rgpA. The mice were subjected to intramuscular injections every two weeks for a total of three administrations. Prior to each immunization, blood samples were collected for antibody detection under isoflurane anesthesia. Following the final immunization, periodontitis was induced two weeks later by using sutures soaked in a P. gingivalis solution. The mice were euthanized after an additional two-week period. To assess the safety of the procedure, major organs were examined through hematoxylin-eosin (HE) staining. Subsequently, the levels of IgG, IgG1, and IgG2a in the serum were quantified via enzyme-linked immunosorbent assay (ELISA). Additionally, the expression of inflammatory factors in the gingiva, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor alpha (TNF-α), was determined using quantitative real-time reverse transcript PCR (qRT-PCR). The extent of bone loss in periodontal tissues was evaluated using micro-computed tomography (micro-CT) and HE staining. RESULTS: HE staining of the organs confirmed the absence of vaccine-induced toxicity in vivo. After the second immunization, both the rgpA and HA groups displayed significantly higher specific IgG titers in comparison to the NC and PBS groups (p < 0.05). Furthermore, the rgpA and HA groups exhibited a noteworthy predominance of IgG1 antibodies after three immunization doses, while there was a noticeable reduction in IgG2a levels observed following ligation with P. gingivalis sutures, as opposed to the NC and PBS groups (p < 0.05). Additionally, both the HA and rgpA groups showed a significant decrease in the expression of inflammatory factors such as IL-6, IL-1ß, and TNF-α, as well as a reduction in bone loss around periodontitis-affected teeth, when compared to the NC and PBS groups (p < 0.05). CONCLUSIONS: The results of this study demonstrate that the rgpA-engineered/functionalized HA gene vaccine is capable of eliciting a potent prophylactic immune response against P. gingivalis-induced periodontitis, effectively serving as an immunogenic and protective agent in vivo.


Assuntos
Periodontite , Vacinas de DNA , Camundongos , Animais , Cisteína Endopeptidases Gingipaínas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Vacinas de DNA/uso terapêutico , Porphyromonas gingivalis/genética , Interleucina-6 , Fator de Necrose Tumoral alfa , Microtomografia por Raio-X , Adesinas Bacterianas , Vacinação , Periodontite/prevenção & controle , Imunoglobulina G
9.
Funct Integr Genomics ; 24(2): 40, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383667

RESUMO

As a common malignant tumor, esophageal squamous cell carcinoma (ESCC) is occasionally seen in clinical practice. This type of disease has low incidence rate and mortality. The post-translational modification of small ubiquitin like modifiers (SUMO) can play a crucial role in regulating protein function, and can significantly impact the occurrence and development of diseases. SUMO-specific peptidase (SENP) affects cell activity by regulating the biological function of SUMO. SENP3 belongs to the SENP family, and available data indicate that many malignancies are associated with SENPs, it is currently unclear its role in ESCC. This study indicates that there is a high level of SENP3 expression in ESCC tumor cells. If the expression level of this gene is high, it can have a significant impact on ESCC cell lines and affect physiological activities such as invasion of KYSE170 cells. If the gene is knocked out, this situation will not occur. There is also research data indicating that this gene can effectively activate related signaling pathways, thereby promoting the physiological activities of malignant tumor cells. In a nude mouse xenograft tumor model, KYSE170 cells with SENP3 expression knockdown induced a smaller volume and weight of tumor tissue. Therefore, it can be clearly stated that SENP3 can enable Wnt/ ß- The catenin signaling pathway is stimulated, which in turn affects the physiological activities of ESCC cells, including the invasion process. The results of this article lay the foundation for clinical staff to carry out clinical management.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt/genética
10.
Cell Mol Life Sci ; 81(1): 58, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279024

RESUMO

Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.


Assuntos
Exossomos , Transcriptoma , Humanos , Exossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Ativação Transcricional , Oxigênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sumoilação , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Cisteína Endopeptidases/metabolismo , Ubiquitina Tiolesterase/metabolismo
11.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
12.
Mol Cell Biol ; 44(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270191

RESUMO

The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells. We demonstrate that Otub1 interacts with the γ-subunit of the heterotrimeric G protein, Gng2, and modulates its ubiquitylation status, thereby controlling Gng2 stability. Proximal mapping of Gng2 revealed an enrichment in partners associated with chemokine signaling, actin cytoskeleton and cell migration. In line with these findings, we show that Otub1-deficient B cells exhibit greater Ca2+ mobilization, F-actin polymerization and chemotactic responsiveness to Cxcl12, Cxcl13 and S1P in vitro, which manifests in vivo as altered localization of B cells within the spleen. Together, our data establishes Otub1 as a novel regulator of G-protein coupled receptor signaling in B cells, regulating their differentiation and positioning in the spleen.


Assuntos
Quimiotaxia de Leucócito , Enzimas Desubiquitinantes , Baço , Ubiquitina , Animais , Camundongos , Enzimas Desubiquitinantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Baço/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Linfócitos B/metabolismo , Quimiotaxia de Leucócito/genética
13.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240591

RESUMO

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Assuntos
Proteases Virais 3C , Enterovirus Humano D , Interferon Tipo I , Transdução de Sinais , Humanos , Proteases Virais 3C/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano D/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo
14.
Curr Med Sci ; 44(1): 134-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273178

RESUMO

OBJECTIVE: SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS: The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS: SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION: SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.


Assuntos
Linfoma de Célula do Manto , Adulto , Animais , Humanos , Camundongos , Apoptose/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Camundongos Nus , Proteínas do Tecido Nervoso , Peptídeo Hidrolases/uso terapêutico , RNA Mensageiro , Proteínas Wnt/uso terapêutico
15.
Mol Cell Proteomics ; 23(2): 100714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199506

RESUMO

Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.


Assuntos
Proteômica , Baço , Animais , Camundongos , Proteômica/métodos , Baço/química , Baço/metabolismo , Cisteína Endopeptidases/metabolismo , Proteoma/análise
16.
J Med Chem ; 67(2): 1127-1146, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170998

RESUMO

Sortase A (SrtA) is a membrane-associated cysteine transpeptidase required for bacterial virulence regulation and anchors surface proteins to cell wall, thereby assisting biofilm formation. SrtA is targeted in antivirulence treatments against Gram-positive bacterial infections. However, the development of potent small-molecule SrtA inhibitors is constrained owing to the limited understanding of the mode of action of inhibitors in the SrtA binding pocket. Herein, we designed and synthesized a novel class of covalent SrtA inhibitors based on the binding mode detailed in the X-ray crystal structure of the ML346/Streptococcus pyogenes SrtA complex. ML346 analog Y40 exhibited 2-fold increased inhibitory activity on Staphylococcus aureus SrtA and showed superior inhibitory effects on biofilm formation in vitro. Y40 protected Galleria mellonella larvae fromS. aureusinfections in vivo while minimally attenuating staphylococcal growth in vitro. Our study indicates that the covalent SrtA inhibitor Y40 is an antivirulence agent that is effective againstS. aureusinfections.


Assuntos
Aminoaciltransferases , Staphylococcus aureus , Proteínas de Bactérias , Cisteína Endopeptidases/metabolismo
17.
J Enzyme Inhib Med Chem ; 39(1): 2301772, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38221792

RESUMO

The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2 , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
18.
Virology ; 590: 109956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052140

RESUMO

The majority of picornaviral 3C proteinases (3Cpro) cleavage sites possess glutamine at the P1 position. Plant nepovirus 3C-like proteinases (3CLpro) show however much broader specificity, cleaving not only after glutamine, but also after several basic and hydrophobic residues. To investigate this difference, we employed AlphaFold to generate structural models of twelve selected 3CLpro, representing six substrate specificities. Generally, we observed favorable correlations between the architecture and charge of nepovirus proteinase S1 subsites and their ability to accept or restrict larger residues. The models identified a conserved aspartate residue close to the P1 residue in the S1 subsites of all nepovirus proteinases examined, consistent with the observed strong bias against negatively-charged residues at the P1 position of nepovirus cleavage sites. Finally, a cramped S4 subsite along with the presence of two unique histidine and serine residues explains the strict requirement of the grapevine fanleaf virus proteinase for serine at the P4 position.


Assuntos
Nepovirus , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Cisteína Endopeptidases/metabolismo , Especificidade por Substrato , Nepovirus/genética , Glutamina , Serina
19.
Int J Biol Macromol ; 255: 128258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984574

RESUMO

The SUMO proteases (Ulps), a group of cysteine proteases, are well known for their efficient ability to perform structure-based cleavage of SUMO tag from the protein of interest and generation of biotherapeutics with authentic N-terminus. However, the stability of Ulps has remained a challenge for the economical production of difficult-to-produce proteins in E. coli. Therefore, the present study aimed to establish the methodology for developing stable S. pombe Ulp1 preparation using different enzyme immobilization strategies. The whole-cell biocatalyst developed using the Pir1 anchor protein of Pichia cleaved the SUMO tag within 24 h of reaction incubation. The chemical immobilization using commercial epoxy and amino methacrylate beads significantly enhanced the operational reusability of SpUlp1 up to 24 cycles. Silica beads further improved the repetitive usage of the immobilized enzyme for 65 cycles. The SpUlp1 immobilization on laboratory-developed chitosan-coated iron oxide nanoparticles exhibited more than 90 % cleavage of SUMO tag from different substrates even after 100 consecutive reactions. Moreover, an effective SUMO tag removal was observed within 10 min of incubation. The operational stability of the immobilized enzyme was confirmed in a pH range of 5 to 13. The spherical nature of nanoparticles was confirmed by FESEM and TEM results. The successful chitosan coating and subsequent activation with glutaraldehyde were established via FT-IR. Furthermore, HRTEM, SAED, and XRD proved the crystalline nature of nanoparticles, while VSM confirmed the superparamagnetic behavior.


Assuntos
Quitosana , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Enzimas Imobilizadas/metabolismo , Escherichia coli/metabolismo , Quitosana/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cisteína Endopeptidases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
20.
RNA ; 30(2): 124-135, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071477

RESUMO

The hydrogen peroxide-induced small RNA OxyS has been proposed to originate from the 3' UTR of a peroxide mRNA. Unexpectedly, phylogenetic OxyS targetome predictions indicate that most OxyS targets belong to the category of "cell cycle," including cell division and cell elongation. Previously, we reported that Escherichia coli OxyS inhibits cell division by repressing expression of the essential transcription termination factor nusG, thereby leading to the expression of the KilR protein, which interferes with the function of the major cell division protein, FtsZ. By interfering with cell division, OxyS brings about cell-cycle arrest, thus allowing DNA damage repair. Cell division and cell elongation are opposing functions to the extent that inhibition of cell division requires a parallel inhibition of cell elongation for the cells to survive. In this study, we report that in addition to cell division, OxyS inhibits mepS, which encodes an essential peptidoglycan endopeptidase that is responsible for cell elongation. Our study indicates that cell-cycle arrest and balancing between cell division and cell elongation are important and conserved functions of the oxidative stress-induced sRNA OxyS.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Fatores de Transcrição/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Divisão Celular/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...